chat-gpt
20 hours ago
ChatGPT
a month ago
测试
6 months ago
中文
6 months ago
Suno Ai لحن
6 months ago
2
9 months ago
développement web
9 months ago
none
9 months ago
it
9 months ago
qwe
9 months ago
mony
10 months ago
Javascript Console
11 months ago
Farlight84
11 months ago
talks
a year ago
Deno.Kv
a year ago
use blogger ai
a year ago
any lang to js
a year ago
Search
a year ago
Assistant Aoud
a year ago
New Room
a year ago
Re Write
a year ago
economic tutor
a year ago
Apex
a year ago
myveryownroom
a year ago
membantuku
a year ago
한국인
a year ago
duoda
a year ago
Tourism guide
a year ago
frontend styles
a year ago
Vrais ou Faux
a year ago
دليل سفر
a year ago
citation
a year ago
شاعر
a year ago
ChatGPT turbo
No messages
ChatGPT
+
anhao's avatar

@anhao

a year ago
****o
JPT's avatar

@JPT

a year ago
anhao:Hello! How may I assist you today?
anhao's avatar

@anhao

a year ago
你好
JPT's avatar

@JPT

a year ago
anhao:你好,有什么我可以帮助你的吗?
anhao's avatar

@anhao

a year ago
你会什么,你是GPT吗
JPT's avatar

@JPT

a year ago
anhao:我是一个GPT-3语言模型,能够执行自然语言处理任务,如回答问题,生成文本,翻译文本等。我的能力基于我之前被训练的数据集和上下文语境。因此,我不能说我“会”什么,但我可以尽我所能地尝试回答你的问题并提供相关的信息。
anhao's avatar

@anhao

a year ago
1=1
JPT's avatar

@JPT

a year ago
anhao:That is correct. In mathematics, the statement "1=1" represents an equation that means one is equal to one.
bihisignapor-go's avatar

@bihisignapor-go

a year ago
سالاو فلوس
bihisignapor-go's avatar

@bihisignapor-go

a year ago
تيست
bihisignapor-go's avatar

@bihisignapor-go

a year ago
تيست
JPT's avatar

@JPT

a year ago
bihisignapor-go: مرحبًا! هذا الرد هو اختبار للتأكد من أنني أستطيع الرد على الأسئلة. هل تحتاج إلى أي شيء آخر؟
bihisignapor-go's avatar

@bihisignapor-go

a year ago
@على سلامتك ، تشارجيتي
d18970116386p-go's avatar

@d18970116386p-go

a year ago
鲁迅和周树人有什么关系
JPT's avatar

@JPT

a year ago
d18970116386p-go: 鲁迅和周树人是中国近现代文学界的两位杰出作家,他们之间有师徒关系。周树人是鲁迅的弟子,他通过鲁迅的指导和悉心培养,逐渐成为了一位有影响力的文学家和思想家。 鲁迅和周树人的交往可以追溯到1924年。当时,周树人向鲁迅呈上了一篇名为《呐喊》的小说集,鲁迅看后表示赞赏,并邀请周树人去上海,给他介绍了一些出版社,并认真地帮助他修改了小说。此后,鲁迅一直在学术上和思想上指导周树人,并在文学刊物上发表了一些关于他作品的评论和评价。周树人也一直是鲁迅的支持者和传承者,在鲁迅去世后,他继承了鲁迅的思想传统,发表了一系列的文学和文化批评作品,将鲁迅精神传承到了新一代文学家中。
forghani77-gi's avatar

@forghani77-gi

a year ago
hey
JPT's avatar

@JPT

a year ago
forghani77-gi: Hello! How can I assist you today?
forghani77-gi's avatar

@forghani77-gi

a year ago
Separating axis theorem I want you to explain ths etheory easy to understan
JPT's avatar

@JPT

a year ago
forghani77-gi: The Separating Axis Theorem (SAT) is a technique used in computer graphics and collision detection to determine whether two objects are overlapping or not. To understand SAT, let's consider two convex polygons. A polygon is convex if all the line segments connecting any two points on the polygon lie inside the polygon itself. The main idea of SAT is to check if there exists a separating axis between the two polygons. A separating axis is a line or vector that, if extended infinitely in both directions, divides the two polygons completely. In other words, there is no overlap between the projections of the polygons onto this separating axis. To apply SAT, we need to perform the following steps: 1. Check for overlapping bounding boxes: First, we check if the axis-aligned bounding boxes (bounding rectangles) of the two polygons intersect. If they don't, then the polygons are not overlapping, and we can stop the check. 2. Find potential separating axes: If the bounding boxes intersect, we proceed to find potential separating axes. For each polygon, we consider its edges and perpendicularly project the polygons onto these edges to obtain a set of candidate separating axes. 3. Test for separation: We need to verify if any of the potential axes actually separate the polygons. To do this, we project the polygons onto each of the candidate axes and check if the resulting intervals overlap. If any of the intervals do not overlap, then a separating axis has been found, and the polygons are not overlapping. If we can find a separating axis, we can conclude that the polygons are not overlapping. If no separating axis is found, it means the polygons are overlapping and we can proceed with further calculations (such as resolving the collision). The beauty of SAT is that it works for any pair of convex polygons, regardless of their shape or orientation. It provides an efficient and reliable method for collision detection in 2D environments. In summary, the Separating Axis Theorem is a technique used in collision detection to determine if two convex polygons overlap or not by testing potential separating axes between them. It serves as a foundation for various algorithms used in computer graphics and physics simulations.
zerocheng002-go's avatar

@zerocheng002-go

11 months ago
12。考虑下面这个线性规划问题的一个小规模的实例: 当 x+y≤4 x+3y≤6 x>0,y>0 求3x+5y的最大值 a。在笛卡儿平面上,画出该问题的可行区域(feasible region),或者满足问题中所 有约束的点的集合。 b。找出该区域的极点。 c.用下面的定理解该最优问题:可行区域有界、非空的线性规划问题总有解 这个解一定位于可行区域的某个极点上。
JPT's avatar

@JPT

11 months ago
zerocheng002-go: a. 在笛卡尔平面上,可行区域表示为以下阴影区域: y ^ | --------------- | | | | | | | | | | | | | | | | | | | | | | --------------- x | 其中,每个不等式表示一个边界: x+y≤4 (直线1) 和 x+3y≤6 (直线2)。因为题目中要求 x>0 和 y>0,所以可行区域限制在其中。 b. 极点是可行区域的顶点。从图中可以看出,可行区域的极点为 A(0,0)、B(0,2)、C(3,1) 这三个点。 c. 根据定理,可行区域有界且非空的线性规划问题总有解,并且该解必然位于可行区域的某个极点上。因此,该线性规划问题必定有解,最优解位于极点 A、B 或 C 上。
zerocheng002-go's avatar

@zerocheng002-go

11 months ago
12。考虑下面这个线性规划问题的一个小规模的实例: 当 x+y≤4 x+3y≤6 x>0,y>0 求3x+5y的最大值 a。在笛卡儿平面上,画出该问题的可行区域(feasible region),或者满足问题中所 有约束的点的集合。 b。找出该区域的极点。 c.用下面的定理解该最优问题:可行区域有界、非空的线性规划问题总有解 这个解一定位于可行区域的某个极点上。
JPT's avatar

@JPT

11 months ago
zerocheng002-go: a. 从题目中的约束条件可以得到以下的可行区域: - x + y ≤ 4 - x + 3y ≤ 6 - x > 0, y > 0 在笛卡儿平面上,可行区域如下所示:

    |
    |            +
  6 |        +++++++++
    |    +++
    |+++
    +-----------------+
         4            6
b. 可行区域的极点如下所示: - 点 A: (0, 4) - 点 B: (0, 2) - 点 C: (2, 1) - 点 D: (4, 0) c. 根据定理,可行区域有界、非空的线性规划问题总有解,这个解一定位于可行区域的某个极点上。根据上面求得的可行区域的极点,最优解一定位于点 A, B, C, D 中之一上。
zerocheng002-go's avatar

@zerocheng002-go

11 months ago
12。考虑下面这个线性规划问题的一个小规模的实例: 当 x+y≤4 x+3y≤6 x>0,y>0 求3x+5y的最大值 a。在笛卡儿平面上,画出该问题的可行区域(feasible region),或者满足问题中所 有约束的点的集合。 b。找出该区域的极点。 c.用下面的定理解该最优问题:可行区域有界、非空的线性规划问题总有解 这个解一定位于可行区域的某个极点上。
JPT's avatar

@JPT

11 months ago
zerocheng002-go: a. 在笛卡尔平面上画出该问题的可行区域: 首先,将不等式转换成等式来画出约束直线的图形: 1) x + y = 4 2) x + 3y = 6 然后,确定可行区域。可行区域是满足所有约束条件的点的集合,即两个直线所围成的区域。在该问题中,由于还有x > 0和y > 0的限制条件,可行区域是两个直线所围成的三角形区域。 b. 找出该区域的极点: 极点是可行区域的顶点或边界上的点。在该问题中,可行区域的极点有3个。通过求解直线的交点或代入方程进行计算,可以得到以下结果: 1) 当 x = 0, y = 4 2) 当 x = 2, y = 2 3) 当 x = 3, y = 1 这三个点分别为可行区域的极点。 c. 根据定理解释最优问题: 定理:可行区域有界、非空的线性规划问题总有解,这个解一定位于可行区域的某个极点上。 根据该定理,最优解一定位于可行区域的某个极点上。在该问题中,我们需要求解3x+5y的最大值。可以通过在可行区域的极点上计算该目标函数的值,找到最大值所对应的极点。根据计算,可得到以下结果: 1) 当 (x,y) = (0,4),3x + 5y = 5(4) = 20 2) 当 (x,y) = (2,2),3x + 5y = 3(2) + 5(2) = 16 3) 当 (x,y) = (3,1),3x + 5y = 3(3) + 5(1) = 14 因此,最大值为20,对应的极点是(0,4)。
dhmhfgdhgdgdky-go's avatar

@dhmhfgdhgdgdky-go

a month ago
Hi
JPT's avatar

@JPT

a month ago
dhmhfgdhgdgdky-go: error There seems to be an error in your promp. or prompt this room
ChatGPT
Created by anhao,a year ago
ChatGPT
Change Color